⁴⁸Ca(t,p),(pol t,p) **1983DaZV,1967Bj06** Type Author Citation Literature Cutoff Date Full Evaluation Jun Chen and Balraj Singh NDS 157, 1 (2019) 15-Apr-2019 1967Bj06 (also 1966Hi01): E(t)=11.97 MeV beam from the Aldermaston Tandem generator. Enriched target. Measured σ(θ) with a magnetic spectrograph (FWHM=15-25 keV). Deduced levels, J, π, L-transfers. See 1968Br01 for analysis of these data. 1983DaZV,1983DaZZ: E=17 MeV. Polarized t. Measured σ(θ), analyzing powers; Q3D magnetic spectrometer. DWBA. 1989WaZO: E=37.3 MeV at Daresbury Lab. Measured σ(θ) from ≈30° to 65° in c.m. system. Heavily oxidized target. Deduced direct (simultaneous) and sequential (two-step) contributions; DWBA and CCBA, respectively. Spectroscopic factor of 1 was assumed for the first three states with configuration=2p²_{3/2}, and for the 3⁻ state with configuration=(2p_{3/2})(1g_{9/2}). CCBA calculations for the ⁵⁰Ca g.s. under-predict the data, but coherent addition of the direct reaction with a normalization, N=1000 MeV-fm^{3/2}, used for ¹⁶O(t,p) yielded a reasonable fit. However, application of the same N to the excited states of ¹⁸O and ⁵⁰Ca overpredicted the data. Only three excited states reported at 1.03, 3.00 and 3.99 MeV. ## Others: 1966Wi11: E(t)=7.5 MeV. Measured proton spectra, $\sigma(\theta)$ at Los Alamos, FWHM=50 keV. Levels at 0, 1025 and 2999 keV, deduced L values. 1966Ve06: shell-model calculations, and explanation of (p,t) results in 1966Hi01. 1967Gl08: discussion of results for 0⁺ states in 1966Hi01. ## ⁵⁰Ca Levels | E(level) [†] | \mathbf{J}^{π} | L [‡] | $\mathrm{d}\sigma/\mathrm{d}\Omega^{\it c}$ | Comments | |-----------------------|--------------------|-------------------|---|---| | 0 | | 0^a | 100 | L=0 (1966Wi11). | | 1029 <i>15</i> | | 2 ^a | 42 | E=1025 7, L=2 (1966Wi11). | | 2999 <i>15</i> | | 2 ^a | 36 | L: other: L=4 in 1989WaZO.
E=2999 10, L=2 (1966Wi11). | | 3519 <i>15</i> | | | 2 | L=0 suggested in 1968Br01, 1967Gl08 and 1966Ve06 in theoretical analyses, by J^{π} =(1,2 ⁺) for a 3531 level in the Adopted Levels. | | 3993 15 | | 3 ^a | 21 | J ^{π} : J ^{π} =2 ⁺ excluded by 1983DaZZ. Note that L(t,p)=3 disagrees with L(α ,2p)=4. 1968Br01 state that L=4 or 5 are inconsistent with $\sigma(\theta)$ data of 1967Bj06. | | 4470 <i>15</i> | $(0^+)^{\#}$ | $(0)^{\text{#}a}$ | 2,2 | • | | 4517 <i>15</i> | | 3^{b} | | | | 4829 <i>15</i> | $(4^+)^{\#}$ | (4)#b | | | | 4878 <i>15</i> | | 1 | | | | 5043 15 | | 1 | | | | 5110 [@] 20 | | b | | | | 5168 [@] 20 | | | | | | 5281 [@] 20 | | | | | | 5362 [@] 20 | | | | | | 5434 [@] 20 | | | | | | 5516 20 | | (4)&
(4)& | | | | 5576 20 | | $(4)^{\&}$ | | | [†] From 1967Bj06; values from 1983DaZV agree within 10 keV (evaluator), but no uncertainties were given. [‡] From DWBA (1983DaZV). L-values for selected levels were deduced by 1967Bj06 and further analysis by 1968Br01. [#] Supported by excitation energy and analyzing power. [@] Not observed in 1983DaZV. [&]amp; Probably L=(4) but data are insufficient. ^a L-value also determined in 1967Bj06 and/or 1968Br01. $^{^{}b}$ $\sigma(\theta)$ obtained in 1967Bj06 but no L assigned in reanalysis of data by 1968Br01. ^c Relative cross sections at an angle where value is maximum (1968Br01,1967Bj06).